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Modulated Phases and Upsilon Points in 
a Spin Model with Helical Ordering 
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The ground state of a one-dimensional, classical X Y  model with competing 
nearest- and next-nearest-neighbor interactions, a sixfold anisotropy, and an 
external field is studied. The model shows various modulated phases, depending 
on the values of the model parameters. Evidence is found that the ground-state 
phase diagram of this model contains upsilon points, multicritical points of a 
new class recently discussed by Bassler, Sasaki, and Griffiths. The phase 
diagram has a self-similar structure near these points, filled with multitudes of 
"mixed phases" whose spin configurations consist of segments of helical and fan 
structures separated by interfaces between them. 

KEY WORDS: Modulated phases; X Y  model; ground states; helical spin 
structures; interfaces; interface interactions; phase diagrams. 

1. I N T R O D U C T I O N  

Phase  t rans i t ions  in systems which have a spat ia l ly  m o d u l a t e d  structure,  
the pe r iod  of  which may  be commensu ra t e  or  i ncommensura t e  with that  of 
an under ly ing  lattice,  have a t t rac ted  much theore t ica l  a t tent ion;  see review 
art icles ~1-5) and  references therein. I t  is often the case that  a complex  
m o d u l a t e d  s t ructure  can be thought  of as consis t ing of doma ins  of a simple 
commensu ra t e  s t ructure  separa ted  by defects (doma in  walls, d i scommen-  
surat ions ,  sol i tons,  etc.). In  cer ta in  s i tuat ions,  the na ture  of  t rans i t ion  from 
one m o d u l a t e d  phase  to ano the r  can be unde r s tood  in terms of defect inter-  
act ions.  F o r  example ,  Vil lain and  G o r d o n  (6) s tudied defect in terac t ions  to 
invest igate  the phase  d i ag ram near  the mul t iphase  po in t  (7) in the axial  
nex t -nea res t -ne ighbor  Ising ( A N N N I )  model .  M o r e  recently,  F i she r  and  
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Szpilka(8 11) carefully defined multidefect interactions to analyze systemati- 
cally phase diagrams of systems which have uniaxially modulated struc- 
tures, and found interesting phenomena such as a quasitricritical point. 
Their analysis was extended by Bassler et al. (~2) to the case in which 
modulated structures can be described as consisting of domains of two 
distinct types separated by interfaces rather than as consisting of domains 
of a single type separated by defects (the two pictures are equivalent if a 
defect is a bound pair of interfaces). The extended analysis revealed certain 
new features which can appear in phase diagrams. The present paper deals 
with one such feature: an upsilon point. 

An upsilon point is an endpoint of a first-order transition line from 
which infinitely many phases "spring out." Figure 1 schematically shows a 
phase diagram, in some parameter space, in the vicinity of an upsilon point 
which is the left endpoint of the transition line between phases e and ft. 
Here the dashed lines are first-order lines and the solid lines represent 
collections of (infinitely many) transition lines which are bunched together 
so tightly that individual lines are not visible. The unlabeled, fan-shaped 
region is filled with multitudes of "mixed phases," each of which has a 
superlattice structure consisting of alternating domains of phases e and fl 
separated by parallel interfaces. The sides of the fan together with the first- 
order line between phases e and fl form a shape resembling the Greek letter 
/ '-lying on its side--hence the name upsilon point. (In this respect an 
upsilon point is analogous to a bicritical point at which two critical lines 

(b) "... ~ P (a) 

Fig. 1. Schematic phase diagram, in some parameter space, in the vicinity of an upsilon 
point at the left end of the transition line between phases ct and B- The dashed lines are first- 
order transitions and the solid lines represent collections of infinitely many transition lines. 
The magnifications of various portions of the phase diagram are shown as the insets (a)-(d). 
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merge to form a first-order line, but quite different in other respects.) The 
interfacial tension between phases ~ and /~ changes its sign at an upsilon 
point: positive on the first-order line and negative in the mixed-phase 
region. The phase diagram has a self-similar structure: a part of it looks 
like the whole; see the magnifications of particular parts of the phase 
diagram shown as the insets (a) and (b) of Fig. 1. It is noted that every 
endpoint of first-order lines in the mixed-phase region is also an upsilon 
point, as suggested by the structures in the leftmost part of Fig. 1 and in 
the inset (b). A portion of a solid line away from any first-order line has 
a structure of"devil's staircase; ''~13'14) see the insets (c) and (d) of Fig. 1. An 
upsilon point is an accumulation point of other upsilon points connected 
through a network of devil's staircases. 

An upsilon point is similar to the multiphase points in the ANNNI 
model, (7) the three-state chiral clock model,(15) the chiral X Y model, (16) and 
a lattice model with a "nonconvex" interaction (17) in that infinitely many 
phases emerge from a particular point in the phase diagram. But the struc- 
ture of the phase diagram near an upsilon point is qualitatively different 
from and much more complicated than those near the multiphase points. 
If an upsilon point is compared with a quasitricritical point mentioned 
above, one will find not only a qualitative difference in the phase diagrams 
near these points, but also a difference in mechanisms which produce these 
"multicriticalities." A quasitricritical point occurs when a defect pair 
interaction changes its character from repulsive to attractive, (8"9'11) while 
it is certain properties of interface interactions, not change in them, that 
determines the occurrence of an upsilon point. (12) 

Examples of upsilon points can be found in certain models of the 
Frenkevel-Kontorova type318 2~ Although the analysis of Bassler et aL ~12) 

is quite general and not restricted to such models, we know no examples 
of upsilon points in other models or in real systems. In this paper we shall 
present evidence that there exist upsilon points in the phase diagram of a 
spin model which may have some relevance to real magnetic systems. 

We consider the one-dimensional system of classical X Y  spins 
described by the Hamiltonian 

9f  = ~ [- - Jcos(0n+ 1 - 8n) + cos(0n + 2 - 8n) 
n 

+ (K/36)(1 - c o s  6 8 , ) -  Hcos  0,] (L1) 

where 0 n is the angle made by the n th spin vector and an external field 
whose magnitude is H >  0. Each spin interacts with its nearest neighbors 
through the coupling J and with its next-nearest neighbors antiferro- 
magnetically. The strength of the second-neighbor coupling is chosen as the 
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unit of energy. The positive parameter K represents the strength of a sixfold 
anisotropy in the X Y  plane. The field H is assumed to be applied along one 
of the easy axes. The model as it is or with further-neighbor spin interac- 
tions has been studied in connection with magnetic materials which exhibit 
layered helical spin configurations/22) 

The ground state of (1.1) with K - - H =  0 is ferromagnetic for J > 4  
and antiferromagnetic for J <  -4,  while a helical spin structure in which 

0n + 1 - 0n = arccos(J/4) (1.2) 

is realized for I JI < 4. In the presence of the magnetic field H but without 
the anisotropy K, the ground-state phase diagram of (1.1) was constructed 
by Nagamiya et al. ~13) based on approximations which are valid at weak 
and strong fields. According to them, a first-order phase transition from a 
helical spin structure to another modulated structure, a "fan" structure, 
occurs as the magnetic field is increased. Further increase of the field results 
in a continuous (second-order) transition to the ferromagnetic state. The 
second-order line is given by H - - 4 ( 1 - J / 4 )  2 for IJl<4. Kitano and 
Nagamiya (24) studied the effects of the anisotropy on these phase tran- 
sitions, using a rather crude approximation. 

We are interested in the ground-state phase diagrams of (1.1) in the 
(J, H) plane for fixed values of K. We begin with the study of an extreme 
case, i.e., the limit K =  oo. In this limit the values available for the spin 
angle 0 becomes discrete and the exact phase diagram can be obtained 
(Section 3) with the aid of the minimization eigenvalue method introduced 
by Griffiths and Chou,  (25'19) a brief explanation of which is given in the 
context of the present model in the next section. In Section 4, a part of 
the phase diagram for finite but large K is studied in the form of a 1/K 
expansion. Candidates for upsilon points are found in the second-order 
approximation. The interactions between the interfaces whose energies 
become zero at these points are calculated numerically for moderate values 
of K in Section 5, since the nature of the interface interactions determines 
the occurrence of upsilon points. The numerical results indicate the 
presence of upsilon points in model (1.1). Mixed phases found near these 
points consist of segments of helical and fan structures, which are 
analogous to the spin structures discussed by Jensen and Mackintosh (26) in 
the study of the magnetic structure of the rare-earth metal Ho. 

2. M I N I M I Z A T I O N  E I G E N V A L U E  M E T H O D  

Finding the ground state of (1.1) is not a trivial task. We shall employ 
several methods in order to attack this problem, one of which is described 
in this section. The other methods will be introduced in Sections 4 and 5. 
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Griffiths and C h o u  (25'19) have shown that finding the ground state of 
(1.1) or a similar one-dimensional model is equivalent to solving a non- 
linear eigenvalue equation. In the case of (1.1), the eigenvalue equation is 
given by 

5+ g*(0, 0')= V(O)+ Wl(O-O')+min[W2(O-O")+ g*(O', 0")l (2.1) 
0" 

where e and ~u(0, 0') are the eigenvalue and eigenfunction; the functions V, 
WI, and W2 are defined by 

V(O) = (K/36)(1 - c o s  6 0 ) -  H cos 0 

W l ( ~ )  = - J  cos  ~, w2(o) = cos g, 
(2.2) 

Equation (2.1) must be solved for e and ~u with the periodic condition 

7/(0, 0 ' )=  ~(0 + 2~, 0 ' )=  ~(0, 0' + 2~) (2.3) 

imposed on ~. The eigenvalue ~ turns out to be identical with the energy 
per spin in the ground state of (1.1). The spin configuration of the ground 
state can be obtained from the map T(0, 0'), which is defined such that it 
yields the value of 0" minimizing the right-hand side of (2.1) for given 
values of 0 and 0'. 

Two numerical procedures have been introduced for solving the mini- 
mization eigenvalue equation (2.1); (19'27) we shall use one of these or the 
other, depending on the situation. In the numerical procedures, the 
continuous variables 0, 0', and 0" are replaced by discrete ones taking on 
a total of N values uniformly spaced on the interval [0, 2g). The first 
procedure introduced by Chou and Griffiths ~19) is a simple iteration 
method. Starting with a trial eigenfunction, the iteration stops when the 
maximum difference between two successive approximate solutions for g* 
becomes less than a predetermined small value 6. With reasonable choices 
of trial functions and 6, the computer time spent by this procedcure is 
roughly proportional to N 3. The second procedure, introduced by Floria 
and Griffiths, ~27) applies to the modified version of (2.1), i.e., 

2e+ ~P(O,O')=(z(O,O')+min[lYg(O,O',z,)~')+ ~(Z,X')] (2.4) 
Z,Z' 

where 

~z(O, 0')  : V(O) -}- m l ( O  -- 0')  -~- V(O') 

~/(0, 0', Z, Z')  = W2(O- Z) + Wl(O'- Z) + W2(O'- Z') 
(2.5) 
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The computer time for this procedure to find e and gt is roughly propor- 
tional to N 4. (It is noted that the computer times necessary for both the 
methods is of order N 2 for models without second-neighbor interactions.) 

Even though the Floria-Griffiths algorithm takes more computer time 
than the iteration method, there are good reasons to use it. It yields the 
(numerically) exact answer to the discretized version of (2.4) within a finite 
number of steps, while the iteration procedure never converges exactly. 
Another advantage of this method is that the information about interfaces, 
which play a crucial role in the analysis of the phase diagram, can be 
obtained (see Section 3.2). For detailed discussion of the minimization 
eigenvalue equation (2.1) and the numerical procedures for solving it, the 
reader is referred to the original papers (19'25'27) and the review article by 
Griffiths (28) 

3. THE L IMIT  K =  oo 

3.1. Phase Diagram 

In the limit of strong anisotropy (K= ~) ,  the spin angle 0 can only 
take on discrete values: 

0 = krc/3 (k = 0, 1, 2, 3, 4, or 5) (3.1) 

Thus the model reduces to a six-state clock model, the integer k being 
the "clock variable." Then the Floria-Griffiths algorithm (with N = 6 )  
discussed in the previous section can be used to obtain the exact ground 
state of (1.1) for given values of J and H. 

The phase diagram obtained in this limiting case is shown in Fig. 2. It 

Fig. 2. 
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The phase diagram in the strong anisotropy limit (K= oo). The solid and dashed 
phase boundaries represent superdegenerate and first-order lines. 
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consists of 17 regions, representing phases A-G and L-U, separated by the 
phase-transition lines or phase boundaries. The dashed lines represent first- 
order transitions as in Fig. 1, but the solid lines here and henceforth have 
a different meaning from that in Fig. 1: each of the solid lines indicates a 
single phase transition, not a collection of transitions, with certain proper- 
ties explained in the next subsection. The three transition lines between 
phases A and S (not shown in the figure), S and T, and T and U are 
parallel to each other and extend to infinity. The spin configurations for 
some of the phases are shown in Fig. 2 by the directed arrows. Phase A is 
ferromagnetic and U antiferromagnetic. On the line H = 0, modulated spin 
structures other than the ferro- or antiferromagnetic states exist for tJI < 3. 
This interval is somewhat shorter than that in the isotropic case ([JI <4)  
discussed in the introduction. 

All the spin configurations found in the ground states for K= oe are 
periodic, the maximum period being 12 of phase L. A periodic configura- 
tion can be specified by giving the sequence of clock variables k, defined in 
(3.1), in a period. We put this sequence in angular brackets. For example, 

Table I, The Spin Configurations and the Energies per Spin for the 
Phases Appearing in Fig. 2 

Phase Spin configuration Energy per spin 

a ( o )  1 - J - / 4  
B (012345) - (I + J)/2 
C (011055 ) (1 - 4J - -  4H)/6 
D (01245) - (7 + 3 J +  2H)/10 
E (1155)  - ( 2 + J + 2 H ) / 4  
F 1 (1144)  - 1  

F 2 (1245)  - 1  
F 3 (0033)  - 1 
F 4 (0134) --1 
G (0105) (1 - 2 J -  3H)/4 
L ( 145125521541 ) - ( 1 0  - J +  2H)/12 
M (0135024) -- (11 -- 3J + 2H)/14 
N (0 l  5 ) (1 - J -  4H)/6 
O (0145125024) - (7 - 2J + 2H)/10 
P1 (003)  - ( 1 -- J + H)/3 
P2 (014)  --(1 - - J + H ) / 3  
Q a (024)  - ( 1 - J)/2 
Q2 (135)  --(1 --J)/2 
R (02514) (3 + 7 J -  2H)/10 
S ( 1 5 )  ( 2 + J - H ) / 2  
T ( 141525 ) (4 + 5J--  H)/6 
U ( 1 4 )  l + J  
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the structure of phase C is represented by (011055). The spin configura- 
tions for all the phases appearing in Fig. 2 are summarized in Table I, 
along with the expression for the energy per spin for each phase, from 
which the phase boundaries can be calculated. The ground states for phases 
F, P, and Q are degenerate. 

Phases B, Q~, and Q2 show helical spin structures, while the structures 
of D, F2, M, and some others are deformed helices. A helix, deformed or 
not, can be right-handed or left-handed; e.g., phase D can be either 
(01245) or (54210). The energy of a helical structure is independent of 
its handedness because the Hamiltonian (1.1) is invariant under the trans- 
formation 0n ~ 0_n. Phases C, E, and G and some others may be regarded 
as having fan structures, in which the spin direction oscillates about the 
direction of the magnetic field as one moves along the chain. 

Since it is impossible to numerically solve the eigenvalue equation 
(2.4) for every pair of J and H, there might be some phases missed in 
Fig. 2. However, we believe that Fig. 2 is the exact phase diagram for 
K =  ~ for the following reason. First of all, we note that the energy per 
spin e of any configuration is a linear function of J and H in this limiting 
case, as explicitly seen in the third column of Table I. This is because the 
direction of each spin is fixed by the infinitely strong anisotropy and does 
not change when J and H are varied. The linear dependence of e on J and 
H implies that each region appearing in the phase diagram has the shape 
of a convex polygon. Therefore, if there were phases missed in Fig. 2, one 
could find those phases by solving (2.4) in the vicinity of a point in the 
phase diagram where two or more lines (phase boundaries or the line 
H =  0) come together. We have found no extra phases by such inspection. 

3.2. S u p e r d e g e n e r a t e  Lines 

There are two types of phase-transition lines in Fig. 2: first-order lines 
indicated by the dashed lines and superdegenerate lines indicated by the 
solid lines. The distinction arises from the properties of an interface 
between the two phases coexisting on a phase boundary. On a first-order 
line, the creation energy of an interface has a positive value. On a super- 
degenerate line, the interface energy and the interactions between interfaces 
are zero. (7'9'12) In the latter situation, interfaces can be brought into the 
system without extra cost of energy. Therefore, various sorts of structures 
consisting of segments of one phase and the other separated by interfaces 
between them can be the ground state: the ground state is infinitely 
degenerate. 

The distinction between the first-order and superdegenerate lines is 
important {9'12) for the analysis of the phase diagram at finite, large K, 
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where the parameter 1/K can be considered as a small perturbation. A 
small perturbation can remove the degeneracy at a superdegenerate line, 
and qualitative changes in the phase diagram may result. By contrast, no 
qualitative change will occur at a first-order line by a small perturbation. 

Given two phases, there can be more than one type of interface 
between them. The one with the lowest creation energy is the one referred 
to in the above discussion. As an example, the minimum energy interface 
between phases E and G is shown in Fig. 3a, where the spin configuration 
is represented by a sequence of clock variables, and the single and double 
underlines are used to denote regions belonging to different phases. The 
interface show in Fig. 3b is not the minimal one. The minimum energy 
interface at a given phase transition may be found with the aid of the eigen- 
functions gJ of (2.1) associated with one phase and the other. (28) When the 
ground state is degenerate, the Floria-Griffiths algorithm for solving (2.4) 
can be used to find gt for each of the distinct ground states, (27'2~ whereas 
the iteration procedure tends to obtain a "mixed" gt composed of parts 
belonging to different gJ associated with different pure phases. (19) Therefore, 
the latter procedure is not suited for finding the minimum energy interface 
at a phase transition. 

In order to calculate the creation energy of an interface, a spin 
configuration containing a pair of interfaces needs to be considered. (7'9' 12,29) 

In Fig. 3c, such a configuration with interfaces of the type shown in Fig. 3a 
is presented. Let 0_i and 0j be the angles of spins located far to the left and 
right, respectively, of the interface pair, and assume that the integers i and 
j are chosen such that the equality 0 i=  0j holds if i and j are large 
enough. Then the formula 

j--1 

lim ~ [1/'(0,)+ Wl(On+l--On)+ W2(0~+2--0,)--~] =2cr+~b~(m) 
i , j  ~ o ~  n = - - i  

(3.2) 

can be used to calculate the creation energy a of the interface. In this for- 
mula, ~ is the energy per spin for the pure phase which lies outside the 

511 551 15511501050105010 (a) 
E G 

11 5511 5511 5501050105010 
(b) 

E G 

51155115010501051155115 (c) 
E G E 

Fig. 3. Spin configurations with interfaces between phases E and G: (a) the minimum-energy 
interface; (b) an interface whose energy is not minimal; (c) a pair of the minimum-energy 
interfaces separated by the distance 8. 
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interface pair (phase E in the case of Fig. 3c) and ~b~(m) represents the 
interaction between the two interfaces, which are assumed to be separated 
by a distance m (m = 8 in the case of Fig. 3c). Assuming that ~bp(m) ~ 0 as 
m --* oo, a is obtained from (3.2) by this limiting process. Once o is deter- 
mined, (3.2) is used to define ~b~(m) for finite m. For the example shown in 
Fig. 3c, we have a =  (2+ 3J)/8 and ~b~(m)=0 on the phase boundary, 
J + H = 3  ( - 2 / 3  < J < 0 ) ,  between phases E and G. The interface given 
in Fig. 3b has a creation energy o-= ( 2 -  3J)/8, which is larger than the 
previous one. 

The definitions of the interaction energies associated with more than 
two interfaces are given in ref. 12, which are straightforward extensions of 
multidefect interactions defined by Fisher and Szpilka. ~9) It turns out that 
all the interactions associated with the minimum energy interfaces on the 
phase-transition lines in Fig. 2 are zero. 

4. E X P A N S I O N  IN P O W E R S  OF I/K 

We now consider modifications of the phase diagram, Fig. 2, produced 
by reducing the anisotropy K from infinity to a finite value. For finite K, 
the spin angle 0 can be any value in the interval [0, 2~). In order to obtain 
the phase diagram with reasonable accuracy by numerically solving the 
eigenvalue equation (2.1), one needs to work with a somewhat large N (a 
few hundred or more), the number of grid points in the discretization of 0; 
this method will take much computer time. In this section we shall consider 
an analytic approach, which can be used in the case of large K, to keep the 
amount of numerical work we need as small as possible. The method 
described below is somewhat analogous to the low-temperature expansions 
used by Fisher and Selke ~7) and Fisher and Szpilka ~s-11) in the study of the 
phase diagrams for the ANNNI and chiral clock models. 

The spin configuration {0n} in the ground state or a metastable state, 
which may contain a number of interfaces, satisfies the force equilibrium 
condition 

~ / ~ 0 ,  = 0 (4.1) 

If the anisotropy K is large, the direction of a spin vector will not deviate 
very much from one of the easy axes. That is, the angle ~o, defined by 

O, = k ,  Tr/3 + q~,, (4.2) 

is small in a force equilibrium configuration for large K. In (4.2), kn is one 
of the clock variables (integers 0-5). If a set of integers {kn} is given, the 
deviation angles q~n in the corresponding equilibrium configuration are 
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found by solving (4.1). Since every ~o, vanishes as K--, o% it may be 
obtained in the form 

1 (~0 (hi) 1 2 - -  ( )  ( 4 . 3 )  
~~ + K2~ ~ + ... 

Substituting (4.2) with (4.3) into (4.1), we find 

(p(~l _ H sin O(O) + J[sin(O(O)+ l (o) in 0 (~ . = - 0 .  ) - s  ( n - 0 ( . ~  

�9 (o) (o) �9 (o) (o) ( 4 . 4 )  --Sln(On+ 2--O n ) - k - s i n ( 0  n --On_2) 

from the terms lowest order in 1/K, where O(,~ From the next- 
order terms, the following equations for -(2) is obtained: qo, 

(/9 (2) = - -  Htf) (1) c o s  0 (0) 

~_ j E ( ~ 0 ( l )  1 _ (f)(1)) . n ( o )  (o) (1) O, ) - ( ~ o  ~0 (,1_) 1 ) cos(0(,~ - 0(,~ ~) ] COS(Un + ~ - -  

(~0 ( 1 ) 2 _  ~0 (1)) - n ( o )  --0~(~ ) ..1_ (~0 n(1) _ _ __ COS(Un+z  @(1) 2) COS(0} O)-'Q(0)vn-2, ] 

(4.5) 

The energy E associated with a spin configuration {0n} in force 
equilibrium is calculated by substituting {0,} into (1.1). After some 
manipulations, noting the relations (4.4) and (4.5), one finds the formula 

E = E o - ~ - - K ~  (q)(1))2 _ ~ Z ,  ~,~(')'~(2) ~ O , e ,  T (4.6) 

where Eo is the energy of the system for K =  c~. We shall calculate, using 
this formula, the energies for various spin configurations which are relevant 
to the analysis of the phase diagram. 

As noted in Section 3.2, qualitative changes in the phase diagram due 
to the finiteness of K can occur at superdegenerate lines in Fig. 2. We shall 
concentrate our attention on three of these lines: the lines separating phases 
B, C, and D, which come together at the point (J, H) = (8/5, 3/5). In order 
to see whether new phase regions appear in the phase diagram, the inter- 
face energies are calculated at these superdegenerate lines. The interfaces of 
interest are those shown in Fig. 4. In this figure, spin configurations are 
represented by sequences of clock variables k,,  but this does not mean that 
the spins are parallel to the easy axes; it is understood that the orientation 
O, of each spin deviates slightly from the easy axis implied by the integer 
k, by an amount determined by (4.1). The same remark applies to similar 
representations, which will appear in what follows, e.g., (4.9) and Fig. 6 
below. 

822r 6 23 
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12345012345011055011055 (a) 
B C 

110550110550124501245 
(b) 

C D 

012450124501234501 2345 
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D B 

Fig. 4. The minimum-energy interfaces connecting (a) phases B and C, (b) C and D, 
(c) D and B. 

In the first-order calculation, it is found that the creation energies of 
all the three interfaces shown in Fig. 4 and the interactions between them 
are zero at the corresponding phase boundaries. Thus, the superdegenerate 
lines under consideration remain superdegenerate in this approximation. 
The point at which these lines come together shifts to the location (J, H) = 
(Jo, H0), where 

8 9 3 69 
J o -  5 125K' H~ = 5 + 500K 

(4.7) 

In the second-order approximation, the creation energy ~cD of the 
interface between phases C and D is obtained as 

3 
a c D -  16K2 ( J -  1) 2 (4.8) 

under the condition that the energies per spin in these phases are the same 
(~c=~D). The fact that acD is negative implies the emergence of a new 
phase which will occupy a finite area in the refined phase diagram. (7'9) 
Since it turns out that the interactions between the interfaces are absent in 
this approximation, the new phase has the structure in which interfaces 
between phases C and D are packed as closely as possible, i.e., the structure 
represented by 

(0124501105421055 ) (4.9) 

whose period is 16. In this structure, there are four interfaces in each 
period. This new phase will be called phase CD. 

The structure (4.9) may be represented in a more compact way, 
because the second half of the configuration in a period is the "mirror 
image" of the first half: 0~ + 8 = -0n  (mod 2n). We shall represent the spin 
configuration (4.9) of phase CD as 

(01245011 )a (4.10) 
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for short. The general definition of the new notation is as follows: 

( k l k2  . . . k r )  2= ( k l k 2 . . . k r k l  1~2" "'l~r~ (4.11) 

where r is half the period of the structure and /~n=6-kn  (mod 6). This 
convention could have been used to represent some of the configurations 
in Table I, e.g., (011) 2 for phase C. 

The creation energies of the other interfaces shown in Fig. 4 are also 
found to be negative in the second-order approximation: 

3 3 
asc = 16/s 5 ( J - 2 )  2, 0"DB= 16K2 (4.12) 

where aec and aeB are the energies of the interfaces between phases B and 
C and phases D and B. The interface interactions are absent in the same 
approximation. The structures of the new phases BC and DB, which will 
appear between phases B and C and between phases D and B in the refined 
phase diagram, are respectively given by 

(012345011) 2 and (01245012345) (4.13) 

There are two interfaces in each half of the period in the former structure 
and in each period in the latter. 

It is noted that both right-handed and left-handed helices (segments 
01245 and 05421) are building blocks of the structure of phase CD, (4.9). 
These blocks are connected via a segment of fan structure (011 or 055). 
The same is true for the structure of phase BC, the helical segments in this 
case being 012345 and 054321. These structures are analogous to what 
Jensen and Mackintosh ~26) called "helifan" in their study of the magnetic 
structure of Ho. The structure of the other new phase, DB, is a helix with 
a definite handedness. 

The phase diagram in the second-order approximation near the 
point where three phases B, C, and D come together in the first-order 
approximation is obtained by comparing the energies per spin for these 
three phases and the three new phases. The result is shown in Fig. 5 as the 
phase diagram in the (x, y) plane, where the parameters x and y are shifted 
and rescaled versions of J and H: 

x = (J-- Jo)K 2, y = ( n - -  Ho)K 2 (4.14) 

where Jo and Ho are given in (4.7). In this phase diagram, the solid and 
dashed lines indicate superdegenerate and first-order lines as in Fig. 2; the 
nature of the phase transitions has been determined from the creation 
energies of appropriate interfaces and interactions between them calculated 
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[ ' ' ' I ' ~ ]  

0 CD (~) 
D 

y . .. BC 

(c~) / B ~ -  

t i /I I t 

- 0 . 4  x 0 0.4 

Fig. 5. A por t ion of the phase diagram obtained in the second-order approximat ion of the 
1/K expansion. The parameters  x and y are defined in (4.14). 

in the second-order approximation. The locations of the three phase points 
in Fig. 5 are listed in Table II. 

In what follows, the helical phase DB and the fan phase C will be 
referred to as phases ~ and/~ for convenience. On the left half of the first- 
order line between these phases, the interface shown in Fig. 6a has the 
minimum creation energy. The energy al of this interface, which will be 
called interface I~, evaluated on the first-order line (17x+38y+  
4668/54= 0) is given by 

15 (1409 ) 
~ - 3 8 K  2 \ 4 . 5 5  + x 

(4.15) 

which vanishes at the left end of the transition line and becomes negative 

Table II. The Locat ions of  the  Three  Phase Points in Fig. 5 

Point  x y 

2091 7653 
B : B C : D B  

4 . 5  s 8.55 

1441 6203 
C : B C : D B  

4.55 8.55 

1409 3653 
C : C D : D B  

4-55 8 . 5  s 

8443 6181 
D: CD :DB 

8.55 16.5  s 
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Fig. 6. 

(a) 1234501245011055011055 
= p 

1245012345011055011055 (b) 
P 

Interfaces (a) I 1 and (b)12 between phases ~ and ft. 

beyond this point. The interface shown in Fig. 6b, which will be called 
interface I2 ,  has the creation energy 

15 {1441_ ) 
a2 -38K2  \ 4 - 5  s x (4.16) 

which is smaller than al on the right half of the c~-fl phase boundary. The 
value of o" 2 goes to zero at the right end of the transition line and becomes 
negative beyond it. 

It is interesting to note that the structure of phase CD can be viewed 
as consisting of close-packed interfaces 11, shown in Fig. 6a, between 
phases c~ and fl (that is, phases D B  and C), even though this structure was 
found by packing interfaces between phases C and D as densely as possible. 
This observation and the fact that the first-order coexistence of c~ and fl 
terminates at the point where cq = 0 bring us to the starting point of the 
analysis by Bassler et al., ~ which is a straightforward but nontrivial 
extension of the work by Fisher and Szpilka. (9) According to their theory, 
the nature of the interactions between interfaces I1, which is absent in 
the present approximation but will be present in refined calculations, 
determines the fine structure of the phase diagram near the endpoint of the 
first-order line. The same argument with interface 12 in place of 11 applies 
to the other endpoint of the ~ /? transition. 

5. E V I D E N C E  FOR U P S I L O N  P O I N T S  

In this section we shall study the detailed structure of the phase 
diagram, which will be revealed by refined calculations, near the endpoints 
of the first-order line between phases c~ and fi in Fig. 5, using the strategy 
employed by Bassler e t a / .  (12) We first consider the left end of the e-fl 
transition, where the energy cr I of interface I 1 shown in Fig. 6a vanishes in 
the second-order approximation of the 1/K expansion. The structures of 
phases which might appear near this point in the phase diagram upon 
further refinement of calculation consist of segments of phases e and fl with 
interfaces I1 inserted between them; an example of such structures is the 
configuration (4.9) or (4.10) for phase CD. It is noted that the size (the 
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number of spins contained) l of a segment of phase e can only take on the 
values 

t = 5 + l l p  (5.1) 

where p I> 0 is any nonnegative integer. Similarly, the size m of a segment 
of phase/~ takes on the values 

m = 3 + 3q (5.2) 

where q ~> 0 is any nonnegative integer. 
The spin configuration for any of these "mixed phases" can be iden- 

tified by a set of integers {li, mi}, representing the sequence of segment 
lengths. We adopt the convention introduced by Bassler et al. (12) to denote 
periodic configurations: a sequence of segment lengths l and m in a period 
is put in square brackets (an l always comes first and an m last). For 
example, the configuration (4.9) for phase CD is denoted as [5, 3, 5, 3]. 
In this example (and others to come), where the second half of the con- 
figuration in a period is the "mirror image" of the first half, we can use the 
shorter notation [5, 3] 2 in analogy to (4.10). 

The energy E associated with a mixed phase can be expressed as (9'~2) 

E = ~ [2al + lie~, + miea] + q) (5.3) 
i 

where as and e B are the energies per spin in phases e and/?, and & is the 
sum of the interface interactions: 

= ~ [~b~(/,.) + ~b~(mi) + ~b~(li, m~) 
i 

+ O~(rn,, li+ 1) + fb~(li, m,,  l~+ 1) -~ " "  "] (5.4) 

The first (second) term in the brackets of (5.4) is the interaction between 
a pair of interfaces between which lies a segment of phase ~ (/~) of length 
li (mi). The third term represents the three-body interaction associated with 
three consecutive interfaces, the first interface being followed by a segment 
c~ of size I i and the second one by a segment/~ of size mi. Now the meaning 
of the other terms in (5.4) should be clear. As noted in Section 3.2, the 
precise definitions of the multibody interactions are given in refs. 12 and 9. 
In the strategy of Bassler et al. ~12) (and of Fisher and Szpilka(9)), we first 
neglect all interface (defect) interactions and then successively take into 
account the pair, triplet, and higher-order interactions to systematically 
construct the phase diagram. 
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We have calculated the two- through six-body interactions based on 
the numerical solutions of the force equilibrium equation (4.1) for various 
configurations containing interfaces. It turns out that the interaction 
decreases rapidly with the number of interfaces and with the distances 
between interfaces. The results for the pair interactions ~b~(l) and ~b~(m) are 
shown in Fig. 7, which are obtained for K =  1.5 under the condition that 
e~=ea and o-1=0 (this implies J~1.55268,  H,,~0.65929). The values of 
~b~(l) and ~ba(m) for given l and m change very little over the small ranges 
of J and H we are interested in, while they get small rapidly as the 
anisotropy K is increased. Both ~b~(l) and ~ba(m) are positive for all l~> 5 
and m/> 3, and satisfy the convexity conditions 

~ 2~b=(l) = ~b=(l + 11 ) + ~b~(l-  11 ) - 2~b=(l) > 0 (5.5) 

zl2~p(m) = ~ba(m + 3) + ~b~(m - 3 ) -  2~b~(m) > 0  (5.6) 

for all l >  5 and m > 3. The three-body interaction ~b~(/, m) calculated with 
the same values of K, J, and H used for Fig. 7 is plotted in Fig. 8a. The 
double difference 32~b=(/, m) of the three-interface interaction defined by the 
following equation is positive for l ~> 5 and m >~ 3: 

A20=(I, m) = On(l, m) + (~([, rh) - 0~([, m) -- r rh) (5.7) 

where { = l +  11 and t h = m +  3. It turns out that O~(l,m)=O~(m, l) for any 
l and m, and therefore the equality A2qJ~(m, l ) = z J 2 ~ ( / ,  m)  holds for 
A2q~r l) defined by (5.7) with cr l, and m replaced by/?,  m, and L The 
importance of the convexity, or lack thereof, of pair interactions and 
the sign of the double differences of three-body interactions was first 
recognized by Fisher and Szpilka. (9) 

m 6 12 18 
I I I I I I 

lO .4 lO-4 

2 10-6 10-6 "E 

~o -8 io-8 

Fig. 7. 

10-101 ] I 10-10 5 16 2J7 
I 

The pair interactions ~b~(l) and ~ba(m) for interface I1, shown in Fig. 6a, calculated for 
K=  1.5, J =  1.5526796095, and H = 0.6592867195. 
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lO-4 

lO 
E 

e ~ 
10-8 

1610 
i 

m 

3 9 15 
i I I I I 

(a) 

1=5 

I I P I I 

I I I ~ I 

~. (b) 

I I I [ P 

3 9 15 
m 

Fig. 8. (a) The three-body interaction ~b~(/, m) for interface I 1 calculated with the same 
values of K, J, and H used for Fig. 7. (b) The plot of the ratio 0~(I, m)/fb~(l) O#(m) implies the 
asymptotic factorization formula (5.9). 

In the approximation which neglects the interactions associated with 
four or more interfaces, the qualitative features of the phase diagram are 
determined by the signs of AZ~b~(/), AZ~b#(m), A20~(l, m), and A2q}#(m, l). 
They are all positive in the present case. This fact implies (12) that the phase 
diagram consists of the regions representing phases [l, m] (or [l, m ]  2 if m 
is given by (5.2) with even q) with any combinations of l~> 5 and m ~> 3. 
The phase diagram obtained for K =  1.5 is shown in Fig. 9. The phase 
transitions between [l, rh] and [/, m] are of first order; the lengths of the 
transition lines get smaller with the values of l and m. The other transition 
lines are superdegenerate, except, of course, for the line between c~ and/~. 
The locations of the phase-transition lines in Fig. 9 are obtained by numeri- 
cally comparing the energies per spin for different phases. They can also be 
calculated by using the formulas given in ref. 12, which are expressed in 
terms of G, e#, ~1, and the interface interactions. 

Since Fig. 9 is full of superdegenerate lines, the higher-order interface 
interactions can yield qualitative changes in the phase diagram. The effects 
of the four- and five-body interactions are examined by using the "renor- 
malization" procedure explained in ref. 12. It turns out that these inter- 
actions lead to splitting of the superdegenerate lines in Fig. 9 to produce 
mixed phases of more complicated structures. The resulting phase diagram 
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Fig. 9. 

0.661 

H 

0.659 

I I I I I 

/[5,6] K=1.5 

'912 13 (011) 2 

~ 9 1 2  

I I I [ F 

1.550 1.552 J 

The phase diagram near the left endpoint  of the first-order line between phases 
a and ft. 

near the left endpoint of the first-order line between phases [5, 6] and 
[16, 3] 2 is shown in Fig. 10. Note that the scale of this figure is magnified 
300 times compared to that of Fig. 9; the effects of the four- and five- 
interface interactions are so small that they do not show up in the phase 
diagram presented with the scale of Fig. 9. 

The structure of Fig. 10 resembles that of Fig. 9. Then, is it expected 
that the superdegenerate lines in Fig. 10 will split due to still higher-order 
interactions to produce structures resembling Figs. 9 or 10 in finer scales? 
If such splittings continue indefinitely, the resulting phase diagram has a 
self-similar structure. If this is the case, the endpoint of the e-fl transition 
line in Fig. 9 is an upsilon point ~12) explained in the introduction (the 

0.660575 ~ . . / [ 5  3 5 6] 2 K=1,5 

[5,6] 

H ~ l  - 

0.660565 L I i _ I J--  
1.55002 1.55003 J 

Fig. 10. A portion of the phase diagram of Fig. 9, near the left end of the first-order line 
between phases [5, 6] and [16, 3] 2, is presented with 300-fold magnification. 
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endpoints of the other first-order lines in Fig. 9 and those in Fig. 10 are 
also upsilon points). 

One cannot be certain, with numerical results of finite accuracy, 
whether the splittings of the superdegenerate lines continue endlessly. 
Nevertheless, we find evidence that the end endpoint of the first-order line 
between phases ~ and/7 is an upsilon point. We first note that, as can be 
seen from Fig. 7, the pair interactions ~b~(l) and ~bs(m ) for large I and m are 
well described by the exponential formulas 

O~(l) = C~A p, q)~(m) = C~Aq~ (5.8) 

where p and q are related to l and m through (5.1) and (5.2), respectively, 
and C~, A~, C~, and A s are positive constants (C~,,~6• -4, 
A~ ~ 2.1 x 10 -3, C s ,~ 5 • 10 -4, and A s ~ 7.8 • 10 -2 for the case shown in 
Fig. 7). The next observation is that the ratio (J~(l,m)/q)~(l)q)n(m) 
approaches a constant value as l and m are increased; see Fig. 8b. This fact 
implies that the factorization formula 

O~(l, m) = (~s(m, l) = t(9~(l) ~ (rn)  (5.9) 

holds for large 1 and m, where t is a positive constant (t ~ 1.03 x 102 for the 
case shown in Fig. 8). Furthermore, our numerical results for interactions 
involving up to six interfaces show that the factorization rule applies to the 
higher-order interface interactions as well if the separations between inter- 
faces are large: 

~b~(ll, rn l,/2,...) = ~b~(/1)t~s(ml)t~b~(/2)... 

q$~(ml, I1, m2,...)= ~bs(ml) t~b~(ll) t~bs(m2)... 
(5.10) 

where the number of factors t on the right-hand side of each equation is 
one less than the number of arguments of ~b on the left. We speculate that 
the (asymptotic) factorization rule holds for all the interface interactions. If 
the interactions have this property as well as the exponential form (5.8), we 
are certain that the left endpoint of the first-order line between phases 
and/7 is an upsilon point (see Section 8 of ref. 12 for detailed explanation). 

Apart from the factors C and t and the values of A in (5.8)-(5.10), the 
exponential form of the pair interactions and the factorization of the multi- 
body interactions can be inferred from the general argument by Fisher and 
Szpilka (9) for models with short-range interactions. However, the informa- 
tion obtained from this general argument is not enough to decide whether 
the point considered here is an upsilon point. The crucial facts revealed by 
the numerical calculation discussed in the previous paragraph are that the 
factorization formulas (5.10) contain only those constants which appear in 
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1.589 1.591 J 

Fig. 11. The phase diagram near the right endpoint of the first-order line between phases 
and ft. 

the pair and triplet interactions (Ca, C~, A~, A~, and t) and that all of 
these constans are positive. 

Now we turn our attention to the right end of the ~-fi transition line, 
where the energy a2 of interface I 2 shown in Fig. 6b becomes zero. The 
mixed phases which can be stable near this point consist of segments of 
phases a and fl separated by interfaces /2. The lengths l and m of phases 

and fl can take on the values 

l = 6 +  llp,  m = 3 + 3 q  (5.11) 

with any nonnegative integers p and q. We have numerically calculated the 
interactions between interfaces 12, up to six-body interactions. The results 
are qualitatively the same as those for interfaces 11 described in the 
preceding paragraphs, which implies that the right endpoint of the a-fl 
transition is an upsilon point, too. The phase diagram obtained near this 
point is shown in Fig. 11, where phase [6, 3] 2 is identical to the one 
denoted as B C  before. 

6. C O N C L U D I N G  R E M A R K S  

We have provided evidence that there are upsilon points, multicritical 
points of a new class discussed by Bassler et al., (12) in the ground-state 
phase diagram of the spin model (1.1). The evidence is obtained from the 
numerical analysis in the previous section, which is based on the result of 
the 1/K expansion of the second order in Section 4. However, it is true that 
for sufficiently small anisotropy K the phase diagram possesses features 
that are not expected from the 1/K-expansion approach. For example, we 
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know that the phase transition from the ferromagnetic phase to a fan phase 
is of second order when K is small enough. (23'24) This result cannot be 
obtained by the 1/K-expansion procedure, because the first-order boundary 
of the ferromagnetic phase in Fig. 2 remains first order when a small 
perturbation 1/K is introduced. Then, to what extent can the 1/K-expan- 
sion result be extrapolated? In particular, is it valid for K as small as 1.5, 
for which most of the numerical calculations in Section 5 are carried out? 

In order to check whether unexpected phases exist in the region of the 
(J, H) plane considered in the analysis in Section 5, we have solved the 
minimization eigenvalue equation (2.1) for K = l . 5  using the Chou- 
Griffiths iteration algorithm (19) with grid points of N = 120. The grid is not 
fine enough to reveal the detailed structures of the phase diagrams pre- 
sented in Section 5, Figs. 9-11, but the result is consistent with the one 
obtained in the second-order approximation of the 1/K expansion, Fig. 5; 
no unexpected phases are found. Thus, we conclude that the 1/K-expansion 
result can be extrapolated to values of K as small as 1.5, at least for the 
region of the (J, H) plane investigated here, and therefore the phase 
diagrams obtained in the last section are correct. 

A crucial point for claiming the existence of upsilon points is whether 
the factorization rule (5.10) really holds for all the interface interactions. 
For models of the Frenkel-Kontorova type, which include X Y  spin 
models, with nearest-neighbor interactions, it has been shown analytically 
that the factorization rule holds asymptotically with exponentially small 
corrections for large separations between interfaces. (3~ A similar analytic 
study for models with next-nearest-neighbor interactions would lead to a 
definite conclusion on the existence of upsilon points in model (1.1). 

We have explored only a small portion of the phase diagram for finite 
K, whereas the complete phase diagram for K-- oe is obtained. In order to 
construct the complete phase diagram for finite K (in particular for small 
K), extensive numerical work would be necessary. It is anticipated that 
interesting features other than the upsilon point, such such as the singular- 
continuous endpoint, described by Bassler et al., ~ would be revealed by 
such work. 

As pointed out in the introduction and in Section 4, the mixed phases 
which appear near the endpoints of the first-order transition between the 
helical phase c~ and the fan phase fl are analogous to what Jensen and 
Mackintosh (26) proposed for the magnetic structure of Ho in the field. This 
analogy may suggest a possibility that a careful examination of the 
magnetic phase diagrams of Ho or some other materials showing helical 
spin ordering may reveal features characteristic of an upsilon point, 
although it is noted that the helical structure of phase c~ here does not seem 
to be identical to any of the commensurate spin structures observed in Ho. 
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